
1

A Data-Driven
Game Object System

GDC 2002

Introduction

Me

– Scott Bilas

– Background

You

– System architect types

– Tired of fighting with statically typed systems for game code

The Test Subject

– Dungeon Siege

– >7300 unique object types (i.e. can be placed in the editor)

– >100000 objects placed in our two maps

– Continuous world means anything can load at any time

Cell Phones?

Definitions

Data-Driven

– Meaning: “No engineer required”

– Engineers are slow

– Causes designers to hack around missing functionality

– Goal: remove C/C++ from game

– Line between engine and content is always moving

Definitions (Cont.)

Game Object (Go)

– Piece of logical interactive content

– Perform tasks like rendering, path finding, path following, speaking, animating,
persisting

– Examples are trees, bushes, monsters, levers, waypoint markers, doors, heroes,
inventory items

– Many are “pure logic”, never see them (triggers, elevator movers, camera
sequences)

– Every game has these in some form

Definitions (Cont.)

Game Object System

– Constructs and manages Go‟s

– Maps ID‟s to object pointers

– Routes messages

– Build from many things, but for this talk

GoDb: Go database

ContentDb: Static content database

– Every game has this in some form

Example Class Tree
Vintage

Example Class Tree
Newfangled

It Won’t Work

There are hundreds of ways to decompose the Go system problem into classes

– They are all wrong

– They don‟t start out wrong, of course…

Games constantly change

– Designer makes decisions independently of engineering type structures

– They will ask for things that cut right across engineering concerns

Just Give In To Change

Requirements get fuzzier the closer your code gets to the content

Will end up regularly refactoring

Do not resist, will cause worse problems!

However: C++ does not support this very well!!

C++: Not Flexible Enough

Code has a tendency to “harden”

– Resists change over time

– Rearranging class tree requires lots of work

Needing to change it causes engineering frustration, which leads to…

– Class merging/hoisting (fights clean OOP)

– Virtual override madness

– Increased complexity increasing resistance

– Doc rot, editor out of sync

Reexamine The Problem

This is a database

– (a very well understood problem)

– “The data is important, nothing else matters”

…and we‟re hard coding it every time

To meet changing design needs, can‟t just data-drive the object properties, must
data-drive structure (schema) of the objects

Solution: Component System

Each component is a self-contained piece of game logic

Assemble components into Go‟s to build complete objects

Specification for assembly driven by data

Lay out data in a C++-style specialization tree to promote reuse and reduce memory
usage

 Include and enforce an external schema

Two-Part Implementation

Dynamic Content Layout

Extension: Skrit
(DS Scripting Language)

Obvious requirement:
build components out of skrit

Leave high performance components in C++

Permits extremely fast prototyping

– No rebuilds required

– Don‟t even have to restart game (reload on the fly)

Schema is internal

Extension: Skrit (Cont.)

Simple implementation (assuming you already have event-driven scripting language
ready)

– GoSkritComponent derivative owns a skrit

– Override all virtuals and pass as events to skrit

Game and editor don‟t know/care difference between C++ and skrit components

– (Neither do the designers)

21 C++ Components

actor, aspect, attack, body, common, conversation, defend, edit, fader, follower, gizmo,
gold, gui, inventory, magic, mind, party, physics, placement, potion, store

148 Skrit components

base_chest, cmd_actor_stats, cmd_ai_dojob, cmd_animation_command,
cmd_auto_save, cmd_camera_command, cmd_camera_move, cmd_camera_waypoint,
cmd_delete_object, cmd_dumb_guy, cmd_enter_nis, cmd_inv_changer,
cmd_leave_nis, cmd_party, cmd_party_wrangler,
cmd_report_gameplay_screen_player, cmd_selection_toggle,
cmd_send_world_message, cmd_steam_puzzle, cmd_texture, dev_console,
dev_path_point, door_basic, elevator_2s_1c_1n, elevator_2s_1c_1n_act_deact,
elevator_2s_1c_2n, elevator_2s_2c_1n, elevator_2s_2c_2n, elevator_2s_3c_1n,
elevator_2s_4c_2n, elevator_3s_1c_1n, elevator_3s_2c_1n, elevator_hidden_stairwell,
elevator_hidden_stairwell_act_deact, elevator_instant_1c, elevator_instant_4s_1c,
fireball_emitter, fire_emitter, fire_emitter_act, generic_emitter, generic_emitter_act,
glow_emitter, glow_emitter_act, go_emitter, particle_emitter, particle_emitter_act,
sound_emitter, sound_emitter_act, spark_emitter, animate_object, camera_quake,
camera_stomp, decal_fade, effect_manager, effect_manager_server, gom_effects,
guts_manager, light_colorwave, light_enable, light_flicker, light_flicker_lightweight,
nodal_tex_anim, nodal_tex_swap, tsd_manager, water_effects,
generator_advanced_a2, generator_auto_object_exploding, generator_basic,
generator_breakable, generator_cage, generator_dumb_guy, generator_in_object,
generator_object_exploding, generator_object_pcontent, generator_random,
activate_chapter, alignment_switcher, attach_robo, breaking_object, check_bool,
check_level, check_quest, chipper, clone_preloader, enchantment_manager,
experience_award, fountain, freeze_manager, generic_accumtrigger, generic_objblock,
hidden_reveal, interface_fade, msg_switch, object_selection_toggle, on_client,
play_chapter_sound, point_snapper, position_sync, respawn_shrine, screen_report,
self_destruct, set_bool, tip, vis_toggle, locked, on_off_lever, gremal_reward, spell,
spell_area_effect, spell_balance, spell_body_bomb, spell_chain_attack, spell_charm,
spell_damage_volume, spell_deathrain, spell_death_explosion, spell_default, spell_fire,
spell_freak, spell_freeze, spell_instant_hit, spell_launch, spell_lightning,
spell_mass_control, spell_mass_enchant, spell_multiple_hit, spell_penalty,
spell_polymorph, spell_reactive_armor, spell_resurrect, spell_return_summoned,
spell_status_effect, spell_summon, spell_summon_multiple, spell_summon_random,
spell_switch_alignment, spell_transmute, spell_turret, test_marker, test_timer, trapped,
trp_explosion, trp_firetrap, trp_launch, trp_lightning, trp_particle, trp_trackball,
minigun_magic

Alert! Before Moving On

Generic datastore required to continue

– INI file, config file, XML store, RIFF, all the same

– Permits generic data retrieval/storage

– DS has “gas”, think “INI with nesting + goodies^2”

Not difficult to roll your own

– Many books/articles on this

– Probably need one for other parts of the game anyway (i.e. you‟ll find uses for it
no problem)

Static Content Layout (Code)

Schema Layout (Code)

Compile ContentDb
Part 1: Build Schema

1. Process components.gas (C++ table specs)

a. Build table specs directly from .gas spec

2. Recursively scan components base directory for all skrit components

a. Compile each skrit

b. Build table specs from metadata in

3.

…now we‟ve got the schema constructed.

C++ Component Schema (Data)

Skrit Component Schema (Data)
(Concept adapted from UnrealScript)

Compile ContentDb
Part 2: Build Templates

(This is just prep work)

1. Recursively scan .gas template tree

a. Note: doesn‟t need to be a physical tree

2. Open data handles to each template

3. Keep track of root nodes, build specialization tree

Template Forest (Data)

Template
Specification
(Data)

Compile ContentDb
Part 3: Compile Templates

1. Recursively compile templates root-down

2. Add data components on demand

3. Read in values, override base template fields

4.

 This is all similar to C++ base-first member initialization in ctors.

Compile ContentDb
Special notes

• We want a flat tree for performance reasons

• Depends on how frequently you construct objects and how fast your data override
system is

• Also permits special const-read optimization that can eliminate memory usage and
CPU for variables that are never changed

• Copy data components on write to avoid unnecessary memory usage

• If have many templates, will need to JIT compile leaf templates to save memory

Editor Integration

This is almost trivial

Editor should have a property sheet type thing

– This is a one-entry view into the db

– Map types and names onto fields using schema

– Can un-override easily by querying template

– Be sure to add a column or tooltip for docs!

Editor Integration (Cont.)

For DS all editing support done through a special “GoEdit” component

– Transforms data between game object and editor

– Supports cheap rollback (undo) by double buffering

– Does not exist in game, only needed in editor

– Automates saving all game object instances – just compare vs. the const data and
write out if different

Not recommended: permitting forced overrides of duplicate data

Instance Specification (Data)

Loading Objects

 In DS, objects are referenced by content ID

Look up instance block to get template to use

 Instantiate Go by that template

– For each block in instance, create a new data component

– Specialize that data component from base in template

– Finally iterate through GoComponents and xfer in data to set initial values

New C++ Components

Can be done with little regard for other components (just add it)

Derive from GoComponent only

– Specializing an existing class just asking for trouble

Add new block to C++ components schema (DOC IT)

Use a factory method

– Simple LUT mapping name „new GoJooky‟

Wait a second, wouldn‟t it be better to write using the scripting language?
(Probably…)

New Skrit Components

Same as C++, just stick it in there

Everything should be autodetect here

Extend the scripting language with metadata

– Pass it straight through to schema query

– Can implement flags, docs, and custom game features like “server only”
components etc.

Managing the Template Tree

Can be maintained by nearly anyone once it‟s set up

Should have multiple roots for broad types

Try to avoid data duplication

Reserve one branch for test templates

– Mark it dev-only (so is excluded for retail build)

– Prefix with test_ or dev_ to avoid namespace pollution

– DS ended up with 150 or so

Advantages I Forgot To Mention

Direct and automatic editor support

Designers can construct their own types to place in the editor (careful, monitor this!)

By only saving out modified data in instances, can make global changes easily by
modifying templates

Reorganizing the template tree is easy

 If embed a sub-tree for designers to build custom views into the database

Some Pitfalls

C++ components prone to becoming intertwined

– Operations can end up being order-dependent, though this is more easily
controlled

– Nothing here is unique to components

 It‟s a little too easy to add templates, perhaps

– DS has >7300 of them, many auto-generated

– System was designed for <100

– Need to keep close eye on template complexity to avoid memory/CPU hog (i.e.
unnecessary components or wacky specialization)

 “With power comes responsibility”

Future

Schema extensible

Add flags and constraints that editor can use

– Auto-detect when can use color chooser or slider or listbox or whatever

Add defaults computed from script

Contact Info

Scott Bilas

http://scottbilas.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2

A Data-Driven
Game Object System

GDC 2002

Introduction

Me

– Scott Bilas

– Background

You

– System architect types

– Tired of fighting with statically typed systems for game code

The Test Subject

– Dungeon Siege

– >7300 unique object types (i.e. can be placed in the editor)

– >100000 objects placed in our two maps

– Continuous world means anything can load at any time

Cell Phones?

Definitions

Data-Driven

– Meaning: “No engineer required”

– Engineers are slow

– Causes designers to hack around missing functionality

– Goal: remove C/C++ from game

– Line between engine and content is always moving

Definitions (Cont.)

Game Object (Go)

– Piece of logical interactive content

– Perform tasks like rendering, path finding, path following, speaking, animating,
persisting

– Examples are trees, bushes, monsters, levers, waypoint markers, doors, heroes,
inventory items

– Many are “pure logic”, never see them (triggers, elevator movers, camera
sequences)

– Every game has these in some form

Definitions (Cont.)

Game Object System

– Constructs and manages Go‟s

– Maps ID‟s to object pointers

– Routes messages

– Build from many things, but for this talk

GoDb: Go database

ContentDb: Static content database

– Every game has this in some form

Example Class Tree
Vintage

Example Class Tree
Newfangled

It Won’t Work

There are hundreds of ways to decompose the Go system problem into classes

– They are all wrong

– They don‟t start out wrong, of course…

Games constantly change

– Designer makes decisions independently of engineering type structures

– They will ask for things that cut right across engineering concerns

Just Give In To Change

Requirements get fuzzier the closer your code gets to the content

Will end up regularly refactoring

Do not resist, will cause worse problems!

However: C++ does not support this very well!!

C++: Not Flexible Enough

Code has a tendency to “harden”

– Resists change over time

– Rearranging class tree requires lots of work

Needing to change it causes engineering frustration, which leads to…

– Class merging/hoisting (fights clean OOP)

– Virtual override madness

– Increased complexity increasing resistance

– Doc rot, editor out of sync

Reexamine The Problem

This is a database

– (a very well understood problem)

– “The data is important, nothing else matters”

…and we‟re hard coding it every time

To meet changing design needs, can‟t just data-drive the object properties, must
data-drive structure (schema) of the objects

Solution: Component System

Each component is a self-contained piece of game logic

Assemble components into Go‟s to build complete objects

Specification for assembly driven by data

Lay out data in a C++-style specialization tree to promote reuse and reduce memory
usage

 Include and enforce an external schema

Two-Part Implementation

Dynamic Content Layout

Extension: Skrit
(DS Scripting Language)

Obvious requirement:
build components out of skrit

Leave high performance components in C++

Permits extremely fast prototyping

– No rebuilds required

– Don‟t even have to restart game (reload on the fly)

Schema is internal

Extension: Skrit (Cont.)

Simple implementation (assuming you already have event-driven scripting language
ready)

– GoSkritComponent derivative owns a skrit

– Override all virtuals and pass as events to skrit

Game and editor don‟t know/care difference between C++ and skrit components

– (Neither do the designers)

21 C++ Components

actor, aspect, attack, body, common, conversation, defend, edit, fader, follower, gizmo,
gold, gui, inventory, magic, mind, party, physics, placement, potion, store

148 Skrit components

base_chest, cmd_actor_stats, cmd_ai_dojob, cmd_animation_command,
cmd_auto_save, cmd_camera_command, cmd_camera_move, cmd_camera_waypoint,
cmd_delete_object, cmd_dumb_guy, cmd_enter_nis, cmd_inv_changer,
cmd_leave_nis, cmd_party, cmd_party_wrangler,
cmd_report_gameplay_screen_player, cmd_selection_toggle,
cmd_send_world_message, cmd_steam_puzzle, cmd_texture, dev_console,
dev_path_point, door_basic, elevator_2s_1c_1n, elevator_2s_1c_1n_act_deact,
elevator_2s_1c_2n, elevator_2s_2c_1n, elevator_2s_2c_2n, elevator_2s_3c_1n,
elevator_2s_4c_2n, elevator_3s_1c_1n, elevator_3s_2c_1n, elevator_hidden_stairwell,
elevator_hidden_stairwell_act_deact, elevator_instant_1c, elevator_instant_4s_1c,
fireball_emitter, fire_emitter, fire_emitter_act, generic_emitter, generic_emitter_act,
glow_emitter, glow_emitter_act, go_emitter, particle_emitter, particle_emitter_act,
sound_emitter, sound_emitter_act, spark_emitter, animate_object, camera_quake,
camera_stomp, decal_fade, effect_manager, effect_manager_server, gom_effects,
guts_manager, light_colorwave, light_enable, light_flicker, light_flicker_lightweight,
nodal_tex_anim, nodal_tex_swap, tsd_manager, water_effects,
generator_advanced_a2, generator_auto_object_exploding, generator_basic,
generator_breakable, generator_cage, generator_dumb_guy, generator_in_object,
generator_object_exploding, generator_object_pcontent, generator_random,
activate_chapter, alignment_switcher, attach_robo, breaking_object, check_bool,
check_level, check_quest, chipper, clone_preloader, enchantment_manager,
experience_award, fountain, freeze_manager, generic_accumtrigger, generic_objblock,
hidden_reveal, interface_fade, msg_switch, object_selection_toggle, on_client,
play_chapter_sound, point_snapper, position_sync, respawn_shrine, screen_report,
self_destruct, set_bool, tip, vis_toggle, locked, on_off_lever, gremal_reward, spell,
spell_area_effect, spell_balance, spell_body_bomb, spell_chain_attack, spell_charm,
spell_damage_volume, spell_deathrain, spell_death_explosion, spell_default, spell_fire,
spell_freak, spell_freeze, spell_instant_hit, spell_launch, spell_lightning,
spell_mass_control, spell_mass_enchant, spell_multiple_hit, spell_penalty,
spell_polymorph, spell_reactive_armor, spell_resurrect, spell_return_summoned,
spell_status_effect, spell_summon, spell_summon_multiple, spell_summon_random,
spell_switch_alignment, spell_transmute, spell_turret, test_marker, test_timer, trapped,
trp_explosion, trp_firetrap, trp_launch, trp_lightning, trp_particle, trp_trackball,
minigun_magic

Alert! Before Moving On

Generic datastore required to continue

– INI file, config file, XML store, RIFF, all the same

– Permits generic data retrieval/storage

– DS has “gas”, think “INI with nesting + goodies^2”

Not difficult to roll your own

– Many books/articles on this

– Probably need one for other parts of the game anyway (i.e. you‟ll find uses for it
no problem)

Static Content Layout (Code)

Schema Layout (Code)

Compile ContentDb
Part 1: Build Schema

1. Process components.gas (C++ table specs)

a. Build table specs directly from .gas spec

2. Recursively scan components base directory for all skrit components

a. Compile each skrit

b. Build table specs from metadata in

3.

…now we‟ve got the schema constructed.

C++ Component Schema (Data)

Skrit Component Schema (Data)
(Concept adapted from UnrealScript)

Compile ContentDb
Part 2: Build Templates

(This is just prep work)

1. Recursively scan .gas template tree

a. Note: doesn‟t need to be a physical tree

2. Open data handles to each template

3. Keep track of root nodes, build specialization tree

Template Forest (Data)

Template
Specification
(Data)

Compile ContentDb
Part 3: Compile Templates

1. Recursively compile templates root-down

2. Add data components on demand

3. Read in values, override base template fields

4.

 This is all similar to C++ base-first member initialization in ctors.

Compile ContentDb
Special notes

• We want a flat tree for performance reasons

• Depends on how frequently you construct objects and how fast your data override
system is

• Also permits special const-read optimization that can eliminate memory usage and
CPU for variables that are never changed

• Copy data components on write to avoid unnecessary memory usage

• If have many templates, will need to JIT compile leaf templates to save memory

Editor Integration

This is almost trivial

Editor should have a property sheet type thing

– This is a one-entry view into the db

– Map types and names onto fields using schema

– Can un-override easily by querying template

– Be sure to add a column or tooltip for docs!

Editor Integration (Cont.)

For DS all editing support done through a special “GoEdit” component

– Transforms data between game object and editor

– Supports cheap rollback (undo) by double buffering

– Does not exist in game, only needed in editor

– Automates saving all game object instances – just compare vs. the const data and
write out if different

Not recommended: permitting forced overrides of duplicate data

Instance Specification (Data)

Loading Objects

 In DS, objects are referenced by content ID

Look up instance block to get template to use

 Instantiate Go by that template

– For each block in instance, create a new data component

– Specialize that data component from base in template

– Finally iterate through GoComponents and xfer in data to set initial values

New C++ Components

Can be done with little regard for other components (just add it)

Derive from GoComponent only

– Specializing an existing class just asking for trouble

Add new block to C++ components schema (DOC IT)

Use a factory method

– Simple LUT mapping name „new GoJooky‟

Wait a second, wouldn‟t it be better to write using the scripting language?
(Probably…)

New Skrit Components

Same as C++, just stick it in there

Everything should be autodetect here

Extend the scripting language with metadata

– Pass it straight through to schema query

– Can implement flags, docs, and custom game features like “server only”
components etc.

Managing the Template Tree

Can be maintained by nearly anyone once it‟s set up

Should have multiple roots for broad types

Try to avoid data duplication

Reserve one branch for test templates

– Mark it dev-only (so is excluded for retail build)

– Prefix with test_ or dev_ to avoid namespace pollution

– DS ended up with 150 or so

Advantages I Forgot To Mention

Direct and automatic editor support

Designers can construct their own types to place in the editor (careful, monitor this!)

By only saving out modified data in instances, can make global changes easily by
modifying templates

Reorganizing the template tree is easy

 If embed a sub-tree for designers to build custom views into the database

Some Pitfalls

C++ components prone to becoming intertwined

– Operations can end up being order-dependent, though this is more easily
controlled

– Nothing here is unique to components

 It‟s a little too easy to add templates, perhaps

– DS has >7300 of them, many auto-generated

– System was designed for <100

– Need to keep close eye on template complexity to avoid memory/CPU hog (i.e.
unnecessary components or wacky specialization)

 “With power comes responsibility”

Future

Schema extensible

Add flags and constraints that editor can use

– Auto-detect when can use color chooser or slider or listbox or whatever

Add defaults computed from script

Contact Info

Scott Bilas

http://scottbilas.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

3

A Data-Driven
Game Object System

GDC 2002

Introduction

Me

– Scott Bilas

– Background

You

– System architect types

– Tired of fighting with statically typed systems for game code

The Test Subject

– Dungeon Siege

– >7300 unique object types (i.e. can be placed in the editor)

– >100000 objects placed in our two maps

– Continuous world means anything can load at any time

Cell Phones?

Definitions

Data-Driven

– Meaning: “No engineer required”

– Engineers are slow

– Causes designers to hack around missing functionality

– Goal: remove C/C++ from game

– Line between engine and content is always moving

Definitions (Cont.)

Game Object (Go)

– Piece of logical interactive content

– Perform tasks like rendering, path finding, path following, speaking, animating,
persisting

– Examples are trees, bushes, monsters, levers, waypoint markers, doors, heroes,
inventory items

– Many are “pure logic”, never see them (triggers, elevator movers, camera
sequences)

– Every game has these in some form

Definitions (Cont.)

Game Object System

– Constructs and manages Go‟s

– Maps ID‟s to object pointers

– Routes messages

– Build from many things, but for this talk

GoDb: Go database

ContentDb: Static content database

– Every game has this in some form

Example Class Tree
Vintage

Example Class Tree
Newfangled

It Won’t Work

There are hundreds of ways to decompose the Go system problem into classes

– They are all wrong

– They don‟t start out wrong, of course…

Games constantly change

– Designer makes decisions independently of engineering type structures

– They will ask for things that cut right across engineering concerns

Just Give In To Change

Requirements get fuzzier the closer your code gets to the content

Will end up regularly refactoring

Do not resist, will cause worse problems!

However: C++ does not support this very well!!

C++: Not Flexible Enough

Code has a tendency to “harden”

– Resists change over time

– Rearranging class tree requires lots of work

Needing to change it causes engineering frustration, which leads to…

– Class merging/hoisting (fights clean OOP)

– Virtual override madness

– Increased complexity increasing resistance

– Doc rot, editor out of sync

Reexamine The Problem

This is a database

– (a very well understood problem)

– “The data is important, nothing else matters”

…and we‟re hard coding it every time

To meet changing design needs, can‟t just data-drive the object properties, must
data-drive structure (schema) of the objects

Solution: Component System

Each component is a self-contained piece of game logic

Assemble components into Go‟s to build complete objects

Specification for assembly driven by data

Lay out data in a C++-style specialization tree to promote reuse and reduce memory
usage

 Include and enforce an external schema

Two-Part Implementation

Dynamic Content Layout

Extension: Skrit
(DS Scripting Language)

Obvious requirement:
build components out of skrit

Leave high performance components in C++

Permits extremely fast prototyping

– No rebuilds required

– Don‟t even have to restart game (reload on the fly)

Schema is internal

Extension: Skrit (Cont.)

Simple implementation (assuming you already have event-driven scripting language
ready)

– GoSkritComponent derivative owns a skrit

– Override all virtuals and pass as events to skrit

Game and editor don‟t know/care difference between C++ and skrit components

– (Neither do the designers)

21 C++ Components

actor, aspect, attack, body, common, conversation, defend, edit, fader, follower, gizmo,
gold, gui, inventory, magic, mind, party, physics, placement, potion, store

148 Skrit components

base_chest, cmd_actor_stats, cmd_ai_dojob, cmd_animation_command,
cmd_auto_save, cmd_camera_command, cmd_camera_move, cmd_camera_waypoint,
cmd_delete_object, cmd_dumb_guy, cmd_enter_nis, cmd_inv_changer,
cmd_leave_nis, cmd_party, cmd_party_wrangler,
cmd_report_gameplay_screen_player, cmd_selection_toggle,
cmd_send_world_message, cmd_steam_puzzle, cmd_texture, dev_console,
dev_path_point, door_basic, elevator_2s_1c_1n, elevator_2s_1c_1n_act_deact,
elevator_2s_1c_2n, elevator_2s_2c_1n, elevator_2s_2c_2n, elevator_2s_3c_1n,
elevator_2s_4c_2n, elevator_3s_1c_1n, elevator_3s_2c_1n, elevator_hidden_stairwell,
elevator_hidden_stairwell_act_deact, elevator_instant_1c, elevator_instant_4s_1c,
fireball_emitter, fire_emitter, fire_emitter_act, generic_emitter, generic_emitter_act,
glow_emitter, glow_emitter_act, go_emitter, particle_emitter, particle_emitter_act,
sound_emitter, sound_emitter_act, spark_emitter, animate_object, camera_quake,
camera_stomp, decal_fade, effect_manager, effect_manager_server, gom_effects,
guts_manager, light_colorwave, light_enable, light_flicker, light_flicker_lightweight,
nodal_tex_anim, nodal_tex_swap, tsd_manager, water_effects,
generator_advanced_a2, generator_auto_object_exploding, generator_basic,
generator_breakable, generator_cage, generator_dumb_guy, generator_in_object,
generator_object_exploding, generator_object_pcontent, generator_random,
activate_chapter, alignment_switcher, attach_robo, breaking_object, check_bool,
check_level, check_quest, chipper, clone_preloader, enchantment_manager,
experience_award, fountain, freeze_manager, generic_accumtrigger, generic_objblock,
hidden_reveal, interface_fade, msg_switch, object_selection_toggle, on_client,
play_chapter_sound, point_snapper, position_sync, respawn_shrine, screen_report,
self_destruct, set_bool, tip, vis_toggle, locked, on_off_lever, gremal_reward, spell,
spell_area_effect, spell_balance, spell_body_bomb, spell_chain_attack, spell_charm,
spell_damage_volume, spell_deathrain, spell_death_explosion, spell_default, spell_fire,
spell_freak, spell_freeze, spell_instant_hit, spell_launch, spell_lightning,
spell_mass_control, spell_mass_enchant, spell_multiple_hit, spell_penalty,
spell_polymorph, spell_reactive_armor, spell_resurrect, spell_return_summoned,
spell_status_effect, spell_summon, spell_summon_multiple, spell_summon_random,
spell_switch_alignment, spell_transmute, spell_turret, test_marker, test_timer, trapped,
trp_explosion, trp_firetrap, trp_launch, trp_lightning, trp_particle, trp_trackball,
minigun_magic

Alert! Before Moving On

Generic datastore required to continue

– INI file, config file, XML store, RIFF, all the same

– Permits generic data retrieval/storage

– DS has “gas”, think “INI with nesting + goodies^2”

Not difficult to roll your own

– Many books/articles on this

– Probably need one for other parts of the game anyway (i.e. you‟ll find uses for it
no problem)

Static Content Layout (Code)

Schema Layout (Code)

Compile ContentDb
Part 1: Build Schema

1. Process components.gas (C++ table specs)

a. Build table specs directly from .gas spec

2. Recursively scan components base directory for all skrit components

a. Compile each skrit

b. Build table specs from metadata in

3.

…now we‟ve got the schema constructed.

C++ Component Schema (Data)

Skrit Component Schema (Data)
(Concept adapted from UnrealScript)

Compile ContentDb
Part 2: Build Templates

(This is just prep work)

1. Recursively scan .gas template tree

a. Note: doesn‟t need to be a physical tree

2. Open data handles to each template

3. Keep track of root nodes, build specialization tree

Template Forest (Data)

Template
Specification
(Data)

Compile ContentDb
Part 3: Compile Templates

1. Recursively compile templates root-down

2. Add data components on demand

3. Read in values, override base template fields

4.

 This is all similar to C++ base-first member initialization in ctors.

Compile ContentDb
Special notes

• We want a flat tree for performance reasons

• Depends on how frequently you construct objects and how fast your data override
system is

• Also permits special const-read optimization that can eliminate memory usage and
CPU for variables that are never changed

• Copy data components on write to avoid unnecessary memory usage

• If have many templates, will need to JIT compile leaf templates to save memory

Editor Integration

This is almost trivial

Editor should have a property sheet type thing

– This is a one-entry view into the db

– Map types and names onto fields using schema

– Can un-override easily by querying template

– Be sure to add a column or tooltip for docs!

Editor Integration (Cont.)

For DS all editing support done through a special “GoEdit” component

– Transforms data between game object and editor

– Supports cheap rollback (undo) by double buffering

– Does not exist in game, only needed in editor

– Automates saving all game object instances – just compare vs. the const data and
write out if different

Not recommended: permitting forced overrides of duplicate data

Instance Specification (Data)

Loading Objects

 In DS, objects are referenced by content ID

Look up instance block to get template to use

 Instantiate Go by that template

– For each block in instance, create a new data component

– Specialize that data component from base in template

– Finally iterate through GoComponents and xfer in data to set initial values

New C++ Components

Can be done with little regard for other components (just add it)

Derive from GoComponent only

– Specializing an existing class just asking for trouble

Add new block to C++ components schema (DOC IT)

Use a factory method

– Simple LUT mapping name „new GoJooky‟

Wait a second, wouldn‟t it be better to write using the scripting language?
(Probably…)

New Skrit Components

Same as C++, just stick it in there

Everything should be autodetect here

Extend the scripting language with metadata

– Pass it straight through to schema query

– Can implement flags, docs, and custom game features like “server only”
components etc.

Managing the Template Tree

Can be maintained by nearly anyone once it‟s set up

Should have multiple roots for broad types

Try to avoid data duplication

Reserve one branch for test templates

– Mark it dev-only (so is excluded for retail build)

– Prefix with test_ or dev_ to avoid namespace pollution

– DS ended up with 150 or so

Advantages I Forgot To Mention

Direct and automatic editor support

Designers can construct their own types to place in the editor (careful, monitor this!)

By only saving out modified data in instances, can make global changes easily by
modifying templates

Reorganizing the template tree is easy

 If embed a sub-tree for designers to build custom views into the database

Some Pitfalls

C++ components prone to becoming intertwined

– Operations can end up being order-dependent, though this is more easily
controlled

– Nothing here is unique to components

 It‟s a little too easy to add templates, perhaps

– DS has >7300 of them, many auto-generated

– System was designed for <100

– Need to keep close eye on template complexity to avoid memory/CPU hog (i.e.
unnecessary components or wacky specialization)

 “With power comes responsibility”

Future

Schema extensible

Add flags and constraints that editor can use

– Auto-detect when can use color chooser or slider or listbox or whatever

Add defaults computed from script

Contact Info

Scott Bilas

http://scottbilas.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

A Data-Driven
Game Object System

GDC 2002

Introduction

Me

– Scott Bilas

– Background

You

– System architect types

– Tired of fighting with statically typed systems for game code

The Test Subject

– Dungeon Siege

– >7300 unique object types (i.e. can be placed in the editor)

– >100000 objects placed in our two maps

– Continuous world means anything can load at any time

Cell Phones?

Definitions

Data-Driven

– Meaning: “No engineer required”

– Engineers are slow

– Causes designers to hack around missing functionality

– Goal: remove C/C++ from game

– Line between engine and content is always moving

Definitions (Cont.)

Game Object (Go)

– Piece of logical interactive content

– Perform tasks like rendering, path finding, path following, speaking, animating,
persisting

– Examples are trees, bushes, monsters, levers, waypoint markers, doors, heroes,
inventory items

– Many are “pure logic”, never see them (triggers, elevator movers, camera
sequences)

– Every game has these in some form

Definitions (Cont.)

Game Object System

– Constructs and manages Go‟s

– Maps ID‟s to object pointers

– Routes messages

– Build from many things, but for this talk

GoDb: Go database

ContentDb: Static content database

– Every game has this in some form

Example Class Tree
Vintage

Example Class Tree
Newfangled

It Won’t Work

There are hundreds of ways to decompose the Go system problem into classes

– They are all wrong

– They don‟t start out wrong, of course…

Games constantly change

– Designer makes decisions independently of engineering type structures

– They will ask for things that cut right across engineering concerns

Just Give In To Change

Requirements get fuzzier the closer your code gets to the content

Will end up regularly refactoring

Do not resist, will cause worse problems!

However: C++ does not support this very well!!

C++: Not Flexible Enough

Code has a tendency to “harden”

– Resists change over time

– Rearranging class tree requires lots of work

Needing to change it causes engineering frustration, which leads to…

– Class merging/hoisting (fights clean OOP)

– Virtual override madness

– Increased complexity increasing resistance

– Doc rot, editor out of sync

Reexamine The Problem

This is a database

– (a very well understood problem)

– “The data is important, nothing else matters”

…and we‟re hard coding it every time

To meet changing design needs, can‟t just data-drive the object properties, must
data-drive structure (schema) of the objects

Solution: Component System

Each component is a self-contained piece of game logic

Assemble components into Go‟s to build complete objects

Specification for assembly driven by data

Lay out data in a C++-style specialization tree to promote reuse and reduce memory
usage

 Include and enforce an external schema

Two-Part Implementation

Dynamic Content Layout

Extension: Skrit
(DS Scripting Language)

Obvious requirement:
build components out of skrit

Leave high performance components in C++

Permits extremely fast prototyping

– No rebuilds required

– Don‟t even have to restart game (reload on the fly)

Schema is internal

Extension: Skrit (Cont.)

Simple implementation (assuming you already have event-driven scripting language
ready)

– GoSkritComponent derivative owns a skrit

– Override all virtuals and pass as events to skrit

Game and editor don‟t know/care difference between C++ and skrit components

– (Neither do the designers)

21 C++ Components

actor, aspect, attack, body, common, conversation, defend, edit, fader, follower, gizmo,
gold, gui, inventory, magic, mind, party, physics, placement, potion, store

148 Skrit components

base_chest, cmd_actor_stats, cmd_ai_dojob, cmd_animation_command,
cmd_auto_save, cmd_camera_command, cmd_camera_move, cmd_camera_waypoint,
cmd_delete_object, cmd_dumb_guy, cmd_enter_nis, cmd_inv_changer,
cmd_leave_nis, cmd_party, cmd_party_wrangler,
cmd_report_gameplay_screen_player, cmd_selection_toggle,
cmd_send_world_message, cmd_steam_puzzle, cmd_texture, dev_console,
dev_path_point, door_basic, elevator_2s_1c_1n, elevator_2s_1c_1n_act_deact,
elevator_2s_1c_2n, elevator_2s_2c_1n, elevator_2s_2c_2n, elevator_2s_3c_1n,
elevator_2s_4c_2n, elevator_3s_1c_1n, elevator_3s_2c_1n, elevator_hidden_stairwell,
elevator_hidden_stairwell_act_deact, elevator_instant_1c, elevator_instant_4s_1c,
fireball_emitter, fire_emitter, fire_emitter_act, generic_emitter, generic_emitter_act,
glow_emitter, glow_emitter_act, go_emitter, particle_emitter, particle_emitter_act,
sound_emitter, sound_emitter_act, spark_emitter, animate_object, camera_quake,
camera_stomp, decal_fade, effect_manager, effect_manager_server, gom_effects,
guts_manager, light_colorwave, light_enable, light_flicker, light_flicker_lightweight,
nodal_tex_anim, nodal_tex_swap, tsd_manager, water_effects,
generator_advanced_a2, generator_auto_object_exploding, generator_basic,
generator_breakable, generator_cage, generator_dumb_guy, generator_in_object,
generator_object_exploding, generator_object_pcontent, generator_random,
activate_chapter, alignment_switcher, attach_robo, breaking_object, check_bool,
check_level, check_quest, chipper, clone_preloader, enchantment_manager,
experience_award, fountain, freeze_manager, generic_accumtrigger, generic_objblock,
hidden_reveal, interface_fade, msg_switch, object_selection_toggle, on_client,
play_chapter_sound, point_snapper, position_sync, respawn_shrine, screen_report,
self_destruct, set_bool, tip, vis_toggle, locked, on_off_lever, gremal_reward, spell,
spell_area_effect, spell_balance, spell_body_bomb, spell_chain_attack, spell_charm,
spell_damage_volume, spell_deathrain, spell_death_explosion, spell_default, spell_fire,
spell_freak, spell_freeze, spell_instant_hit, spell_launch, spell_lightning,
spell_mass_control, spell_mass_enchant, spell_multiple_hit, spell_penalty,
spell_polymorph, spell_reactive_armor, spell_resurrect, spell_return_summoned,
spell_status_effect, spell_summon, spell_summon_multiple, spell_summon_random,
spell_switch_alignment, spell_transmute, spell_turret, test_marker, test_timer, trapped,
trp_explosion, trp_firetrap, trp_launch, trp_lightning, trp_particle, trp_trackball,
minigun_magic

Alert! Before Moving On

Generic datastore required to continue

– INI file, config file, XML store, RIFF, all the same

– Permits generic data retrieval/storage

– DS has “gas”, think “INI with nesting + goodies^2”

Not difficult to roll your own

– Many books/articles on this

– Probably need one for other parts of the game anyway (i.e. you‟ll find uses for it
no problem)

Static Content Layout (Code)

Schema Layout (Code)

Compile ContentDb
Part 1: Build Schema

1. Process components.gas (C++ table specs)

a. Build table specs directly from .gas spec

2. Recursively scan components base directory for all skrit components

a. Compile each skrit

b. Build table specs from metadata in

3.

…now we‟ve got the schema constructed.

C++ Component Schema (Data)

Skrit Component Schema (Data)
(Concept adapted from UnrealScript)

Compile ContentDb
Part 2: Build Templates

(This is just prep work)

1. Recursively scan .gas template tree

a. Note: doesn‟t need to be a physical tree

2. Open data handles to each template

3. Keep track of root nodes, build specialization tree

Template Forest (Data)

Template
Specification
(Data)

Compile ContentDb
Part 3: Compile Templates

1. Recursively compile templates root-down

2. Add data components on demand

3. Read in values, override base template fields

4.

 This is all similar to C++ base-first member initialization in ctors.

Compile ContentDb
Special notes

• We want a flat tree for performance reasons

• Depends on how frequently you construct objects and how fast your data override
system is

• Also permits special const-read optimization that can eliminate memory usage and
CPU for variables that are never changed

• Copy data components on write to avoid unnecessary memory usage

• If have many templates, will need to JIT compile leaf templates to save memory

Editor Integration

This is almost trivial

Editor should have a property sheet type thing

– This is a one-entry view into the db

– Map types and names onto fields using schema

– Can un-override easily by querying template

– Be sure to add a column or tooltip for docs!

Editor Integration (Cont.)

For DS all editing support done through a special “GoEdit” component

– Transforms data between game object and editor

– Supports cheap rollback (undo) by double buffering

– Does not exist in game, only needed in editor

– Automates saving all game object instances – just compare vs. the const data and
write out if different

Not recommended: permitting forced overrides of duplicate data

Instance Specification (Data)

Loading Objects

 In DS, objects are referenced by content ID

Look up instance block to get template to use

 Instantiate Go by that template

– For each block in instance, create a new data component

– Specialize that data component from base in template

– Finally iterate through GoComponents and xfer in data to set initial values

New C++ Components

Can be done with little regard for other components (just add it)

Derive from GoComponent only

– Specializing an existing class just asking for trouble

Add new block to C++ components schema (DOC IT)

Use a factory method

– Simple LUT mapping name „new GoJooky‟

Wait a second, wouldn‟t it be better to write using the scripting language?
(Probably…)

New Skrit Components

Same as C++, just stick it in there

Everything should be autodetect here

Extend the scripting language with metadata

– Pass it straight through to schema query

– Can implement flags, docs, and custom game features like “server only”
components etc.

Managing the Template Tree

Can be maintained by nearly anyone once it‟s set up

Should have multiple roots for broad types

Try to avoid data duplication

Reserve one branch for test templates

– Mark it dev-only (so is excluded for retail build)

– Prefix with test_ or dev_ to avoid namespace pollution

– DS ended up with 150 or so

Advantages I Forgot To Mention

Direct and automatic editor support

Designers can construct their own types to place in the editor (careful, monitor this!)

By only saving out modified data in instances, can make global changes easily by
modifying templates

Reorganizing the template tree is easy

 If embed a sub-tree for designers to build custom views into the database

Some Pitfalls

C++ components prone to becoming intertwined

– Operations can end up being order-dependent, though this is more easily
controlled

– Nothing here is unique to components

 It‟s a little too easy to add templates, perhaps

– DS has >7300 of them, many auto-generated

– System was designed for <100

– Need to keep close eye on template complexity to avoid memory/CPU hog (i.e.
unnecessary components or wacky specialization)

 “With power comes responsibility”

Future

Schema extensible

Add flags and constraints that editor can use

– Auto-detect when can use color chooser or slider or listbox or whatever

Add defaults computed from script

Contact Info

Scott Bilas

http://scottbilas.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

5

A Data-Driven
Game Object System

GDC 2002

Introduction

Me

– Scott Bilas

– Background

You

– System architect types

– Tired of fighting with statically typed systems for game code

The Test Subject

– Dungeon Siege

– >7300 unique object types (i.e. can be placed in the editor)

– >100000 objects placed in our two maps

– Continuous world means anything can load at any time

Cell Phones?

Definitions

Data-Driven

– Meaning: “No engineer required”

– Engineers are slow

– Causes designers to hack around missing functionality

– Goal: remove C/C++ from game

– Line between engine and content is always moving

Definitions (Cont.)

Game Object (Go)

– Piece of logical interactive content

– Perform tasks like rendering, path finding, path following, speaking, animating,
persisting

– Examples are trees, bushes, monsters, levers, waypoint markers, doors, heroes,
inventory items

– Many are “pure logic”, never see them (triggers, elevator movers, camera
sequences)

– Every game has these in some form

Definitions (Cont.)

Game Object System

– Constructs and manages Go‟s

– Maps ID‟s to object pointers

– Routes messages

– Build from many things, but for this talk

GoDb: Go database

ContentDb: Static content database

– Every game has this in some form

Example Class Tree
Vintage

Example Class Tree
Newfangled

It Won’t Work

There are hundreds of ways to decompose the Go system problem into classes

– They are all wrong

– They don‟t start out wrong, of course…

Games constantly change

– Designer makes decisions independently of engineering type structures

– They will ask for things that cut right across engineering concerns

Just Give In To Change

Requirements get fuzzier the closer your code gets to the content

Will end up regularly refactoring

Do not resist, will cause worse problems!

However: C++ does not support this very well!!

C++: Not Flexible Enough

Code has a tendency to “harden”

– Resists change over time

– Rearranging class tree requires lots of work

Needing to change it causes engineering frustration, which leads to…

– Class merging/hoisting (fights clean OOP)

– Virtual override madness

– Increased complexity increasing resistance

– Doc rot, editor out of sync

Reexamine The Problem

This is a database

– (a very well understood problem)

– “The data is important, nothing else matters”

…and we‟re hard coding it every time

To meet changing design needs, can‟t just data-drive the object properties, must
data-drive structure (schema) of the objects

Solution: Component System

Each component is a self-contained piece of game logic

Assemble components into Go‟s to build complete objects

Specification for assembly driven by data

Lay out data in a C++-style specialization tree to promote reuse and reduce memory
usage

 Include and enforce an external schema

Two-Part Implementation

Dynamic Content Layout

Extension: Skrit
(DS Scripting Language)

Obvious requirement:
build components out of skrit

Leave high performance components in C++

Permits extremely fast prototyping

– No rebuilds required

– Don‟t even have to restart game (reload on the fly)

Schema is internal

Extension: Skrit (Cont.)

Simple implementation (assuming you already have event-driven scripting language
ready)

– GoSkritComponent derivative owns a skrit

– Override all virtuals and pass as events to skrit

Game and editor don‟t know/care difference between C++ and skrit components

– (Neither do the designers)

21 C++ Components

actor, aspect, attack, body, common, conversation, defend, edit, fader, follower, gizmo,
gold, gui, inventory, magic, mind, party, physics, placement, potion, store

148 Skrit components

base_chest, cmd_actor_stats, cmd_ai_dojob, cmd_animation_command,
cmd_auto_save, cmd_camera_command, cmd_camera_move, cmd_camera_waypoint,
cmd_delete_object, cmd_dumb_guy, cmd_enter_nis, cmd_inv_changer,
cmd_leave_nis, cmd_party, cmd_party_wrangler,
cmd_report_gameplay_screen_player, cmd_selection_toggle,
cmd_send_world_message, cmd_steam_puzzle, cmd_texture, dev_console,
dev_path_point, door_basic, elevator_2s_1c_1n, elevator_2s_1c_1n_act_deact,
elevator_2s_1c_2n, elevator_2s_2c_1n, elevator_2s_2c_2n, elevator_2s_3c_1n,
elevator_2s_4c_2n, elevator_3s_1c_1n, elevator_3s_2c_1n, elevator_hidden_stairwell,
elevator_hidden_stairwell_act_deact, elevator_instant_1c, elevator_instant_4s_1c,
fireball_emitter, fire_emitter, fire_emitter_act, generic_emitter, generic_emitter_act,
glow_emitter, glow_emitter_act, go_emitter, particle_emitter, particle_emitter_act,
sound_emitter, sound_emitter_act, spark_emitter, animate_object, camera_quake,
camera_stomp, decal_fade, effect_manager, effect_manager_server, gom_effects,
guts_manager, light_colorwave, light_enable, light_flicker, light_flicker_lightweight,
nodal_tex_anim, nodal_tex_swap, tsd_manager, water_effects,
generator_advanced_a2, generator_auto_object_exploding, generator_basic,
generator_breakable, generator_cage, generator_dumb_guy, generator_in_object,
generator_object_exploding, generator_object_pcontent, generator_random,
activate_chapter, alignment_switcher, attach_robo, breaking_object, check_bool,
check_level, check_quest, chipper, clone_preloader, enchantment_manager,
experience_award, fountain, freeze_manager, generic_accumtrigger, generic_objblock,
hidden_reveal, interface_fade, msg_switch, object_selection_toggle, on_client,
play_chapter_sound, point_snapper, position_sync, respawn_shrine, screen_report,
self_destruct, set_bool, tip, vis_toggle, locked, on_off_lever, gremal_reward, spell,
spell_area_effect, spell_balance, spell_body_bomb, spell_chain_attack, spell_charm,
spell_damage_volume, spell_deathrain, spell_death_explosion, spell_default, spell_fire,
spell_freak, spell_freeze, spell_instant_hit, spell_launch, spell_lightning,
spell_mass_control, spell_mass_enchant, spell_multiple_hit, spell_penalty,
spell_polymorph, spell_reactive_armor, spell_resurrect, spell_return_summoned,
spell_status_effect, spell_summon, spell_summon_multiple, spell_summon_random,
spell_switch_alignment, spell_transmute, spell_turret, test_marker, test_timer, trapped,
trp_explosion, trp_firetrap, trp_launch, trp_lightning, trp_particle, trp_trackball,
minigun_magic

Alert! Before Moving On

Generic datastore required to continue

– INI file, config file, XML store, RIFF, all the same

– Permits generic data retrieval/storage

– DS has “gas”, think “INI with nesting + goodies^2”

Not difficult to roll your own

– Many books/articles on this

– Probably need one for other parts of the game anyway (i.e. you‟ll find uses for it
no problem)

Static Content Layout (Code)

Schema Layout (Code)

Compile ContentDb
Part 1: Build Schema

1. Process components.gas (C++ table specs)

a. Build table specs directly from .gas spec

2. Recursively scan components base directory for all skrit components

a. Compile each skrit

b. Build table specs from metadata in

3.

…now we‟ve got the schema constructed.

C++ Component Schema (Data)

Skrit Component Schema (Data)
(Concept adapted from UnrealScript)

Compile ContentDb
Part 2: Build Templates

(This is just prep work)

1. Recursively scan .gas template tree

a. Note: doesn‟t need to be a physical tree

2. Open data handles to each template

3. Keep track of root nodes, build specialization tree

Template Forest (Data)

Template
Specification
(Data)

Compile ContentDb
Part 3: Compile Templates

1. Recursively compile templates root-down

2. Add data components on demand

3. Read in values, override base template fields

4.

 This is all similar to C++ base-first member initialization in ctors.

Compile ContentDb
Special notes

• We want a flat tree for performance reasons

• Depends on how frequently you construct objects and how fast your data override
system is

• Also permits special const-read optimization that can eliminate memory usage and
CPU for variables that are never changed

• Copy data components on write to avoid unnecessary memory usage

• If have many templates, will need to JIT compile leaf templates to save memory

Editor Integration

This is almost trivial

Editor should have a property sheet type thing

– This is a one-entry view into the db

– Map types and names onto fields using schema

– Can un-override easily by querying template

– Be sure to add a column or tooltip for docs!

Editor Integration (Cont.)

For DS all editing support done through a special “GoEdit” component

– Transforms data between game object and editor

– Supports cheap rollback (undo) by double buffering

– Does not exist in game, only needed in editor

– Automates saving all game object instances – just compare vs. the const data and
write out if different

Not recommended: permitting forced overrides of duplicate data

Instance Specification (Data)

Loading Objects

 In DS, objects are referenced by content ID

Look up instance block to get template to use

 Instantiate Go by that template

– For each block in instance, create a new data component

– Specialize that data component from base in template

– Finally iterate through GoComponents and xfer in data to set initial values

New C++ Components

Can be done with little regard for other components (just add it)

Derive from GoComponent only

– Specializing an existing class just asking for trouble

Add new block to C++ components schema (DOC IT)

Use a factory method

– Simple LUT mapping name „new GoJooky‟

Wait a second, wouldn‟t it be better to write using the scripting language?
(Probably…)

New Skrit Components

Same as C++, just stick it in there

Everything should be autodetect here

Extend the scripting language with metadata

– Pass it straight through to schema query

– Can implement flags, docs, and custom game features like “server only”
components etc.

Managing the Template Tree

Can be maintained by nearly anyone once it‟s set up

Should have multiple roots for broad types

Try to avoid data duplication

Reserve one branch for test templates

– Mark it dev-only (so is excluded for retail build)

– Prefix with test_ or dev_ to avoid namespace pollution

– DS ended up with 150 or so

Advantages I Forgot To Mention

Direct and automatic editor support

Designers can construct their own types to place in the editor (careful, monitor this!)

By only saving out modified data in instances, can make global changes easily by
modifying templates

Reorganizing the template tree is easy

 If embed a sub-tree for designers to build custom views into the database

Some Pitfalls

C++ components prone to becoming intertwined

– Operations can end up being order-dependent, though this is more easily
controlled

– Nothing here is unique to components

 It‟s a little too easy to add templates, perhaps

– DS has >7300 of them, many auto-generated

– System was designed for <100

– Need to keep close eye on template complexity to avoid memory/CPU hog (i.e.
unnecessary components or wacky specialization)

 “With power comes responsibility”

Future

Schema extensible

Add flags and constraints that editor can use

– Auto-detect when can use color chooser or slider or listbox or whatever

Add defaults computed from script

Contact Info

Scott Bilas

http://scottbilas.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

6

A Data-Driven
Game Object System

GDC 2002

Introduction

Me

– Scott Bilas

– Background

You

– System architect types

– Tired of fighting with statically typed systems for game code

The Test Subject

– Dungeon Siege

– >7300 unique object types (i.e. can be placed in the editor)

– >100000 objects placed in our two maps

– Continuous world means anything can load at any time

Cell Phones?

Definitions

Data-Driven

– Meaning: “No engineer required”

– Engineers are slow

– Causes designers to hack around missing functionality

– Goal: remove C/C++ from game

– Line between engine and content is always moving

Definitions (Cont.)

Game Object (Go)

– Piece of logical interactive content

– Perform tasks like rendering, path finding, path following, speaking, animating,
persisting

– Examples are trees, bushes, monsters, levers, waypoint markers, doors, heroes,
inventory items

– Many are “pure logic”, never see them (triggers, elevator movers, camera
sequences)

– Every game has these in some form

Definitions (Cont.)

Game Object System

– Constructs and manages Go‟s

– Maps ID‟s to object pointers

– Routes messages

– Build from many things, but for this talk

GoDb: Go database

ContentDb: Static content database

– Every game has this in some form

Example Class Tree
Vintage

Example Class Tree
Newfangled

It Won’t Work

There are hundreds of ways to decompose the Go system problem into classes

– They are all wrong

– They don‟t start out wrong, of course…

Games constantly change

– Designer makes decisions independently of engineering type structures

– They will ask for things that cut right across engineering concerns

Just Give In To Change

Requirements get fuzzier the closer your code gets to the content

Will end up regularly refactoring

Do not resist, will cause worse problems!

However: C++ does not support this very well!!

C++: Not Flexible Enough

Code has a tendency to “harden”

– Resists change over time

– Rearranging class tree requires lots of work

Needing to change it causes engineering frustration, which leads to…

– Class merging/hoisting (fights clean OOP)

– Virtual override madness

– Increased complexity increasing resistance

– Doc rot, editor out of sync

Reexamine The Problem

This is a database

– (a very well understood problem)

– “The data is important, nothing else matters”

…and we‟re hard coding it every time

To meet changing design needs, can‟t just data-drive the object properties, must
data-drive structure (schema) of the objects

Solution: Component System

Each component is a self-contained piece of game logic

Assemble components into Go‟s to build complete objects

Specification for assembly driven by data

Lay out data in a C++-style specialization tree to promote reuse and reduce memory
usage

 Include and enforce an external schema

Two-Part Implementation

Dynamic Content Layout

Extension: Skrit
(DS Scripting Language)

Obvious requirement:
build components out of skrit

Leave high performance components in C++

Permits extremely fast prototyping

– No rebuilds required

– Don‟t even have to restart game (reload on the fly)

Schema is internal

Extension: Skrit (Cont.)

Simple implementation (assuming you already have event-driven scripting language
ready)

– GoSkritComponent derivative owns a skrit

– Override all virtuals and pass as events to skrit

Game and editor don‟t know/care difference between C++ and skrit components

– (Neither do the designers)

21 C++ Components

actor, aspect, attack, body, common, conversation, defend, edit, fader, follower, gizmo,
gold, gui, inventory, magic, mind, party, physics, placement, potion, store

148 Skrit components

base_chest, cmd_actor_stats, cmd_ai_dojob, cmd_animation_command,
cmd_auto_save, cmd_camera_command, cmd_camera_move, cmd_camera_waypoint,
cmd_delete_object, cmd_dumb_guy, cmd_enter_nis, cmd_inv_changer,
cmd_leave_nis, cmd_party, cmd_party_wrangler,
cmd_report_gameplay_screen_player, cmd_selection_toggle,
cmd_send_world_message, cmd_steam_puzzle, cmd_texture, dev_console,
dev_path_point, door_basic, elevator_2s_1c_1n, elevator_2s_1c_1n_act_deact,
elevator_2s_1c_2n, elevator_2s_2c_1n, elevator_2s_2c_2n, elevator_2s_3c_1n,
elevator_2s_4c_2n, elevator_3s_1c_1n, elevator_3s_2c_1n, elevator_hidden_stairwell,
elevator_hidden_stairwell_act_deact, elevator_instant_1c, elevator_instant_4s_1c,
fireball_emitter, fire_emitter, fire_emitter_act, generic_emitter, generic_emitter_act,
glow_emitter, glow_emitter_act, go_emitter, particle_emitter, particle_emitter_act,
sound_emitter, sound_emitter_act, spark_emitter, animate_object, camera_quake,
camera_stomp, decal_fade, effect_manager, effect_manager_server, gom_effects,
guts_manager, light_colorwave, light_enable, light_flicker, light_flicker_lightweight,
nodal_tex_anim, nodal_tex_swap, tsd_manager, water_effects,
generator_advanced_a2, generator_auto_object_exploding, generator_basic,
generator_breakable, generator_cage, generator_dumb_guy, generator_in_object,
generator_object_exploding, generator_object_pcontent, generator_random,
activate_chapter, alignment_switcher, attach_robo, breaking_object, check_bool,
check_level, check_quest, chipper, clone_preloader, enchantment_manager,
experience_award, fountain, freeze_manager, generic_accumtrigger, generic_objblock,
hidden_reveal, interface_fade, msg_switch, object_selection_toggle, on_client,
play_chapter_sound, point_snapper, position_sync, respawn_shrine, screen_report,
self_destruct, set_bool, tip, vis_toggle, locked, on_off_lever, gremal_reward, spell,
spell_area_effect, spell_balance, spell_body_bomb, spell_chain_attack, spell_charm,
spell_damage_volume, spell_deathrain, spell_death_explosion, spell_default, spell_fire,
spell_freak, spell_freeze, spell_instant_hit, spell_launch, spell_lightning,
spell_mass_control, spell_mass_enchant, spell_multiple_hit, spell_penalty,
spell_polymorph, spell_reactive_armor, spell_resurrect, spell_return_summoned,
spell_status_effect, spell_summon, spell_summon_multiple, spell_summon_random,
spell_switch_alignment, spell_transmute, spell_turret, test_marker, test_timer, trapped,
trp_explosion, trp_firetrap, trp_launch, trp_lightning, trp_particle, trp_trackball,
minigun_magic

Alert! Before Moving On

Generic datastore required to continue

– INI file, config file, XML store, RIFF, all the same

– Permits generic data retrieval/storage

– DS has “gas”, think “INI with nesting + goodies^2”

Not difficult to roll your own

– Many books/articles on this

– Probably need one for other parts of the game anyway (i.e. you‟ll find uses for it
no problem)

Static Content Layout (Code)

Schema Layout (Code)

Compile ContentDb
Part 1: Build Schema

1. Process components.gas (C++ table specs)

a. Build table specs directly from .gas spec

2. Recursively scan components base directory for all skrit components

a. Compile each skrit

b. Build table specs from metadata in

3.

…now we‟ve got the schema constructed.

C++ Component Schema (Data)

Skrit Component Schema (Data)
(Concept adapted from UnrealScript)

Compile ContentDb
Part 2: Build Templates

(This is just prep work)

1. Recursively scan .gas template tree

a. Note: doesn‟t need to be a physical tree

2. Open data handles to each template

3. Keep track of root nodes, build specialization tree

Template Forest (Data)

Template
Specification
(Data)

Compile ContentDb
Part 3: Compile Templates

1. Recursively compile templates root-down

2. Add data components on demand

3. Read in values, override base template fields

4.

 This is all similar to C++ base-first member initialization in ctors.

Compile ContentDb
Special notes

• We want a flat tree for performance reasons

• Depends on how frequently you construct objects and how fast your data override
system is

• Also permits special const-read optimization that can eliminate memory usage and
CPU for variables that are never changed

• Copy data components on write to avoid unnecessary memory usage

• If have many templates, will need to JIT compile leaf templates to save memory

Editor Integration

This is almost trivial

Editor should have a property sheet type thing

– This is a one-entry view into the db

– Map types and names onto fields using schema

– Can un-override easily by querying template

– Be sure to add a column or tooltip for docs!

Editor Integration (Cont.)

For DS all editing support done through a special “GoEdit” component

– Transforms data between game object and editor

– Supports cheap rollback (undo) by double buffering

– Does not exist in game, only needed in editor

– Automates saving all game object instances – just compare vs. the const data and
write out if different

Not recommended: permitting forced overrides of duplicate data

Instance Specification (Data)

Loading Objects

 In DS, objects are referenced by content ID

Look up instance block to get template to use

 Instantiate Go by that template

– For each block in instance, create a new data component

– Specialize that data component from base in template

– Finally iterate through GoComponents and xfer in data to set initial values

New C++ Components

Can be done with little regard for other components (just add it)

Derive from GoComponent only

– Specializing an existing class just asking for trouble

Add new block to C++ components schema (DOC IT)

Use a factory method

– Simple LUT mapping name „new GoJooky‟

Wait a second, wouldn‟t it be better to write using the scripting language?
(Probably…)

New Skrit Components

Same as C++, just stick it in there

Everything should be autodetect here

Extend the scripting language with metadata

– Pass it straight through to schema query

– Can implement flags, docs, and custom game features like “server only”
components etc.

Managing the Template Tree

Can be maintained by nearly anyone once it‟s set up

Should have multiple roots for broad types

Try to avoid data duplication

Reserve one branch for test templates

– Mark it dev-only (so is excluded for retail build)

– Prefix with test_ or dev_ to avoid namespace pollution

– DS ended up with 150 or so

Advantages I Forgot To Mention

Direct and automatic editor support

Designers can construct their own types to place in the editor (careful, monitor this!)

By only saving out modified data in instances, can make global changes easily by
modifying templates

Reorganizing the template tree is easy

 If embed a sub-tree for designers to build custom views into the database

Some Pitfalls

C++ components prone to becoming intertwined

– Operations can end up being order-dependent, though this is more easily
controlled

– Nothing here is unique to components

 It‟s a little too easy to add templates, perhaps

– DS has >7300 of them, many auto-generated

– System was designed for <100

– Need to keep close eye on template complexity to avoid memory/CPU hog (i.e.
unnecessary components or wacky specialization)

 “With power comes responsibility”

Future

Schema extensible

Add flags and constraints that editor can use

– Auto-detect when can use color chooser or slider or listbox or whatever

Add defaults computed from script

Contact Info

Scott Bilas

http://scottbilas.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

7

A Data-Driven
Game Object System

GDC 2002

Introduction

Me

– Scott Bilas

– Background

You

– System architect types

– Tired of fighting with statically typed systems for game code

The Test Subject

– Dungeon Siege

– >7300 unique object types (i.e. can be placed in the editor)

– >100000 objects placed in our two maps

– Continuous world means anything can load at any time

Cell Phones?

Definitions

Data-Driven

– Meaning: “No engineer required”

– Engineers are slow

– Causes designers to hack around missing functionality

– Goal: remove C/C++ from game

– Line between engine and content is always moving

Definitions (Cont.)

Game Object (Go)

– Piece of logical interactive content

– Perform tasks like rendering, path finding, path following, speaking, animating,
persisting

– Examples are trees, bushes, monsters, levers, waypoint markers, doors, heroes,
inventory items

– Many are “pure logic”, never see them (triggers, elevator movers, camera
sequences)

– Every game has these in some form

Definitions (Cont.)

Game Object System

– Constructs and manages Go‟s

– Maps ID‟s to object pointers

– Routes messages

– Build from many things, but for this talk

GoDb: Go database

ContentDb: Static content database

– Every game has this in some form

Example Class Tree
Vintage

Example Class Tree
Newfangled

It Won’t Work

There are hundreds of ways to decompose the Go system problem into classes

– They are all wrong

– They don‟t start out wrong, of course…

Games constantly change

– Designer makes decisions independently of engineering type structures

– They will ask for things that cut right across engineering concerns

Just Give In To Change

Requirements get fuzzier the closer your code gets to the content

Will end up regularly refactoring

Do not resist, will cause worse problems!

However: C++ does not support this very well!!

C++: Not Flexible Enough

Code has a tendency to “harden”

– Resists change over time

– Rearranging class tree requires lots of work

Needing to change it causes engineering frustration, which leads to…

– Class merging/hoisting (fights clean OOP)

– Virtual override madness

– Increased complexity increasing resistance

– Doc rot, editor out of sync

Reexamine The Problem

This is a database

– (a very well understood problem)

– “The data is important, nothing else matters”

…and we‟re hard coding it every time

To meet changing design needs, can‟t just data-drive the object properties, must
data-drive structure (schema) of the objects

Solution: Component System

Each component is a self-contained piece of game logic

Assemble components into Go‟s to build complete objects

Specification for assembly driven by data

Lay out data in a C++-style specialization tree to promote reuse and reduce memory
usage

 Include and enforce an external schema

Two-Part Implementation

Dynamic Content Layout

Extension: Skrit
(DS Scripting Language)

Obvious requirement:
build components out of skrit

Leave high performance components in C++

Permits extremely fast prototyping

– No rebuilds required

– Don‟t even have to restart game (reload on the fly)

Schema is internal

Extension: Skrit (Cont.)

Simple implementation (assuming you already have event-driven scripting language
ready)

– GoSkritComponent derivative owns a skrit

– Override all virtuals and pass as events to skrit

Game and editor don‟t know/care difference between C++ and skrit components

– (Neither do the designers)

21 C++ Components

actor, aspect, attack, body, common, conversation, defend, edit, fader, follower, gizmo,
gold, gui, inventory, magic, mind, party, physics, placement, potion, store

148 Skrit components

base_chest, cmd_actor_stats, cmd_ai_dojob, cmd_animation_command,
cmd_auto_save, cmd_camera_command, cmd_camera_move, cmd_camera_waypoint,
cmd_delete_object, cmd_dumb_guy, cmd_enter_nis, cmd_inv_changer,
cmd_leave_nis, cmd_party, cmd_party_wrangler,
cmd_report_gameplay_screen_player, cmd_selection_toggle,
cmd_send_world_message, cmd_steam_puzzle, cmd_texture, dev_console,
dev_path_point, door_basic, elevator_2s_1c_1n, elevator_2s_1c_1n_act_deact,
elevator_2s_1c_2n, elevator_2s_2c_1n, elevator_2s_2c_2n, elevator_2s_3c_1n,
elevator_2s_4c_2n, elevator_3s_1c_1n, elevator_3s_2c_1n, elevator_hidden_stairwell,
elevator_hidden_stairwell_act_deact, elevator_instant_1c, elevator_instant_4s_1c,
fireball_emitter, fire_emitter, fire_emitter_act, generic_emitter, generic_emitter_act,
glow_emitter, glow_emitter_act, go_emitter, particle_emitter, particle_emitter_act,
sound_emitter, sound_emitter_act, spark_emitter, animate_object, camera_quake,
camera_stomp, decal_fade, effect_manager, effect_manager_server, gom_effects,
guts_manager, light_colorwave, light_enable, light_flicker, light_flicker_lightweight,
nodal_tex_anim, nodal_tex_swap, tsd_manager, water_effects,
generator_advanced_a2, generator_auto_object_exploding, generator_basic,
generator_breakable, generator_cage, generator_dumb_guy, generator_in_object,
generator_object_exploding, generator_object_pcontent, generator_random,
activate_chapter, alignment_switcher, attach_robo, breaking_object, check_bool,
check_level, check_quest, chipper, clone_preloader, enchantment_manager,
experience_award, fountain, freeze_manager, generic_accumtrigger, generic_objblock,
hidden_reveal, interface_fade, msg_switch, object_selection_toggle, on_client,
play_chapter_sound, point_snapper, position_sync, respawn_shrine, screen_report,
self_destruct, set_bool, tip, vis_toggle, locked, on_off_lever, gremal_reward, spell,
spell_area_effect, spell_balance, spell_body_bomb, spell_chain_attack, spell_charm,
spell_damage_volume, spell_deathrain, spell_death_explosion, spell_default, spell_fire,
spell_freak, spell_freeze, spell_instant_hit, spell_launch, spell_lightning,
spell_mass_control, spell_mass_enchant, spell_multiple_hit, spell_penalty,
spell_polymorph, spell_reactive_armor, spell_resurrect, spell_return_summoned,
spell_status_effect, spell_summon, spell_summon_multiple, spell_summon_random,
spell_switch_alignment, spell_transmute, spell_turret, test_marker, test_timer, trapped,
trp_explosion, trp_firetrap, trp_launch, trp_lightning, trp_particle, trp_trackball,
minigun_magic

Alert! Before Moving On

Generic datastore required to continue

– INI file, config file, XML store, RIFF, all the same

– Permits generic data retrieval/storage

– DS has “gas”, think “INI with nesting + goodies^2”

Not difficult to roll your own

– Many books/articles on this

– Probably need one for other parts of the game anyway (i.e. you‟ll find uses for it
no problem)

Static Content Layout (Code)

Schema Layout (Code)

Compile ContentDb
Part 1: Build Schema

1. Process components.gas (C++ table specs)

a. Build table specs directly from .gas spec

2. Recursively scan components base directory for all skrit components

a. Compile each skrit

b. Build table specs from metadata in

3.

…now we‟ve got the schema constructed.

C++ Component Schema (Data)

Skrit Component Schema (Data)
(Concept adapted from UnrealScript)

Compile ContentDb
Part 2: Build Templates

(This is just prep work)

1. Recursively scan .gas template tree

a. Note: doesn‟t need to be a physical tree

2. Open data handles to each template

3. Keep track of root nodes, build specialization tree

Template Forest (Data)

Template
Specification
(Data)

Compile ContentDb
Part 3: Compile Templates

1. Recursively compile templates root-down

2. Add data components on demand

3. Read in values, override base template fields

4.

 This is all similar to C++ base-first member initialization in ctors.

Compile ContentDb
Special notes

• We want a flat tree for performance reasons

• Depends on how frequently you construct objects and how fast your data override
system is

• Also permits special const-read optimization that can eliminate memory usage and
CPU for variables that are never changed

• Copy data components on write to avoid unnecessary memory usage

• If have many templates, will need to JIT compile leaf templates to save memory

Editor Integration

This is almost trivial

Editor should have a property sheet type thing

– This is a one-entry view into the db

– Map types and names onto fields using schema

– Can un-override easily by querying template

– Be sure to add a column or tooltip for docs!

Editor Integration (Cont.)

For DS all editing support done through a special “GoEdit” component

– Transforms data between game object and editor

– Supports cheap rollback (undo) by double buffering

– Does not exist in game, only needed in editor

– Automates saving all game object instances – just compare vs. the const data and
write out if different

Not recommended: permitting forced overrides of duplicate data

Instance Specification (Data)

Loading Objects

 In DS, objects are referenced by content ID

Look up instance block to get template to use

 Instantiate Go by that template

– For each block in instance, create a new data component

– Specialize that data component from base in template

– Finally iterate through GoComponents and xfer in data to set initial values

New C++ Components

Can be done with little regard for other components (just add it)

Derive from GoComponent only

– Specializing an existing class just asking for trouble

Add new block to C++ components schema (DOC IT)

Use a factory method

– Simple LUT mapping name „new GoJooky‟

Wait a second, wouldn‟t it be better to write using the scripting language?
(Probably…)

New Skrit Components

Same as C++, just stick it in there

Everything should be autodetect here

Extend the scripting language with metadata

– Pass it straight through to schema query

– Can implement flags, docs, and custom game features like “server only”
components etc.

Managing the Template Tree

Can be maintained by nearly anyone once it‟s set up

Should have multiple roots for broad types

Try to avoid data duplication

Reserve one branch for test templates

– Mark it dev-only (so is excluded for retail build)

– Prefix with test_ or dev_ to avoid namespace pollution

– DS ended up with 150 or so

Advantages I Forgot To Mention

Direct and automatic editor support

Designers can construct their own types to place in the editor (careful, monitor this!)

By only saving out modified data in instances, can make global changes easily by
modifying templates

Reorganizing the template tree is easy

 If embed a sub-tree for designers to build custom views into the database

Some Pitfalls

C++ components prone to becoming intertwined

– Operations can end up being order-dependent, though this is more easily
controlled

– Nothing here is unique to components

 It‟s a little too easy to add templates, perhaps

– DS has >7300 of them, many auto-generated

– System was designed for <100

– Need to keep close eye on template complexity to avoid memory/CPU hog (i.e.
unnecessary components or wacky specialization)

 “With power comes responsibility”

Future

Schema extensible

Add flags and constraints that editor can use

– Auto-detect when can use color chooser or slider or listbox or whatever

Add defaults computed from script

Contact Info

Scott Bilas

http://scottbilas.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

